Performance Comparison of Different Image Sizes for Recognizing Unconstrained Handwritten Tamil Characters using SVM
نویسندگان
چکیده
This study describes a system for recognizing offline handwritten Tamil characters using Support Vector Machine (SVM). Data samples are collected from different writers on A4 sized documents. They are scanned using a flat bed scanner at a resolution of 300 dpi and stored as grey scale images. Various preprocessing operations are performed on the digitized image to enhance the quality of the image. Random sized preprocessed image is normalized to uniform sized image. Pixel densities are calculated for different zones of the image and these values are used as the features of a character. These features are used to train and test the support vector machine. The support vector machine is tested for the first time for recognizing handwritten Tamil characters. The recognition results are tested for 3 different standard sizes of 32X32, 48X48 and 64X64. Pixel densities are calculated for various zones and also for overlapping zones of the 64X64 sized image. Best results are obtained for 64X64 sized normalized image with overlapping windows. The handwriting system is trained for 106 different characters and test results are given for 34 different Tamil characters. With a simple feature of pixel density, the system has achieved a very good recognition rate of 87.4% on the totally unconstrained handwritten Tamil character database.
منابع مشابه
Combining Self-Organizing Maps and Radial Basis Function Networks for Tamil handwritten Character Recognition
An exceptional effort has been extended in making a computer recognize both typed and handwritten characters automatically. Quite recent still today, the characters of English Language is been the main explore area for our researchers. Tamil under Asian languages has little or no attention is been given. The challenges posed by Indian languages are different from English. In addition, there has...
متن کاملAn Improved Handwritten Tamil Character Recognition System using Octal Graph
Problem Statement: Handwriting recognition has attracted voluminous research in recent times. The segmentation and recognition of the characters from handwritten scripts incorporates considerable overhead. Almost all the existing handwritten character recognition techniques use neural network approach, which requires lot of preprocessing and hence accomplishing these problems using neural netwo...
متن کاملRecognizing Handwritten Characters with Local Descriptors and Bags of Visual Words
In this paper we propose the use of several feature extraction methods, which have been shown before to perform well for object recognition, for recognizing handwritten characters, These methods are the histogram of oriented gradients (HOG), a bag of visual words using pixel intensity information (BOW), and a bag of visual words using extracted HOG features (HOG-BOW). These feature extraction a...
متن کاملOffline Tamil Handwritten Character Recognition using Zone based Hybrid Feature Extraction Technique
Character recognition is the most important research area in today’s world. Many researchers have focused on recognizing handwritten digits, numerals and characters in so many languages. To the best of our knowledge, little work has been done in the area of Tamil handwritten character recognition but they did not achieve better accuracy. Feature extraction is the important phase of character re...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007